ТД "АУМАС"
судно на воздушной подушке, аэроджипы, аэростаты, планеры, вертолеты, самолеты, аэрокатер
Тел./Факс: (8552) 77-36-15
МОБ.:+7 905 374 0010
   

Прочность оболочки аэростата

Усилия, возникающие в элементах оболочки

При проектировании оболочек аэростата конструктор обязан заложить такие запасы прочности, которые обеспечат необходимый уровень безопасности при эксплуатации в течение всего срока службы. Нормы летной годности для аэростатов, изложенные в 31-й части Авиационных правил, требуют, чтобы расчетные нагрузки для всех элементов оболочки в пять раз превосходили те, которые возникают в процессе эксплуатации. Этого нельзя забывать и тем, кто эксплуатирует воздушный шар. При проверке прочности ткани она не должна быть меньше той, которая предписана в эксплуатационной документации. Как правило, предельная прочность ткани, при которой дальнейшая эксплуатация оболочки становится недопустимой, составляет для различных типов оболочек 350...600 кг/м, то есть один погонный метр ткани должен выдерживать не менее 350...600 килограмм, конкретное значение зависит от конструкции оболочки.
Напряжения, возникающие в ткани, зависят от перепада давления и радиуса кривизны, для сферической оболочки напряжения, действующие в меридиональном и поперечном (кольцевом) направлении, определяются выражением:

где Тм, Тк - напряжение в ткани, Н/м; ∆р - избыточное давление в оболочке, Н/м2 или Па; R - радиус кривизны оболочки, м.

Так как оболочка аэростата не является сферой, то напряжения в ней определяются по более сложным выражениям, в то же время всегда сохраняется тенденция к росту напряжения с увеличением давления и радиуса оболочки.

Как видно из формулы, с увеличением радиуса сферической оболочки возрастает напряжение в ткани, поэтому при изготовлении оболочек, особенно больших размеров, применяются различные конструктивные приемы, позволяющие уменьшить эти напряжения. Для уменьшения напряжений в меридиональном направлении чаше всего применяют два приема:

  • увеличение количества вертикальных лент, а следовательно, и количества долек (полотнищ) оболочки, ленты снимают часть меридиональных нагрузок, приходящихся на ткань;
  • уменьшение радиуса кривизны ткани между лентами в кольцевом направлении, оболочка при этом имеет вид, показанный на рис. 6.4 в и 6.7 а ее полотнища имеют ярко выраженную объемность.

  Рис. 6.7. Вид оболочки сверху, в которой уменьшение напряжений в меридиональном направлении достигнуто за счет уменьшения радиуса кривизны ткани между лентами

Распределение, или, как принято говорить, эпюры, усилий и напряжений в ткани и лентах оболочки во многом зависит от конструкции и видов применяемых материалов, в качестве примера на рис. 6.8 показаны усилия и напряжения для оболочки объемом 2550 м3 с 24 полотнищами при максимальной загрузке аэростата. Однако необходимо еще раз отметить, что конкретные величины усилий и напряжений, даже для оболочек одного объема и с одинаковым количеством полотнищ, могут существенно отличаться при изменении материалов ленты и ткани, а также конструкции оболочки.

 

Показанные на рис. 6.8 усилия соответствуют свободному полету аэростата. В момент старта, при работе на привязи в ветреную погоду или при попадании аэростата в сильные турбулентные потоки картина распределения усилий резко меняется, особенно сильно возрастают нагрузки на элементы оболочки при возникновении так называемых «ложек».

Рис. 6.8. Усилия и напряжения в цементах оболочки. Объем 2550м3, количество полотнищ - 24. а - усилие в вертикальных лентах; б - напряжение в меридиональном направлении в ткани

 

После прекращения действия ветра под действием внутреннего давления происходит резкий динамический удар, в этот момент оболочка испытывает нагрузки, в несколько раз превосходящие те, которые возникают в свободном полете. Именно по этой причине нельзя пренебрегать рекомендациями по предельной прочности ткани, которая записана в эксплуатационной документации. Как ни странно, но при динамических воздействиях ветра с наибольшей вероятностью разрушения могут подвергаться части оболочки, наименее нагруженные в статическом случае.

В начале 1996 года в Швейцарских Альпах потерпел катастрофу аэростат Кристиана Беккера, профессионального пилота. Полет проходил в спокойной атмосфере, его снимали с земли несколько кинолюбителей, вдруг неожиданно в оболочке образовалась большая вмятина, а через пару секунд оболочка разорвалась вдоль вертикальной силовой ленты. Находящиеся на земле видели, как аэростат камнем рухнул на отвесный склон скалы, в результате этой трагедии погибпи пять человек. Как показало расследование трагедии, оболочка этого аэростата налетала 700 часов и пилот, с целью восстановления ресурса, заменил на ней верхнюю часть.

При возникновении резкого бокового удара ветра оболочка будет сминаться больше там, где меньше внутреннее давление, но этого давления достаточно, чтобы с большой скоростью вернуть ткань в исходное положение после прекращения действия ветра и вызвать в ней напряжения, способные ее разорвать. Например, в нижней части оболочки до экваториальной части внутреннее давление при средней загрузке аэростата изменяется от 0 до 1,5 мм вод. ст., после снятия внешнего усилия на каждый квадратный метр ткани массой 60...80 г будет действовать сила до 1,5 кг, в первоначальный момент возникнет ускорение в 15...20 g и напряжения в момент ликвидации «ложки» существенно превысят те, которые действовали до ее возникновения.

Из сказанного выше следует очень важный вывод: при выработке тканью своего ресурса оболочку аэростата необходимо менять, попытка отремонтировать только отдельные части оболочки может очень дорою стоить.

Источник: Таланов А. В. Все о воздушных шарах.
Москва, Издательство Астрель, 2002.

   
Copyright © 2008 ТД "АУМАС"
Тел.: (8552) 77-36-15
судно на воздушной подушке свп Условия использования материалов сайта Политика конфиденциальности
Cоздание сайтa Вебцентр CMS SiteEdit